

Crop Pro

re-defined.

Cwere changing everything...

Carbon

The New Carbon -

- DAKOTA has re-defined organic compounds and what the ey can do.
- Unlike ordinary humic acid products that are extracted fro m coal, REV is a superior and naturally-occurring organic carbon.
- REV is the only crop product with the perfect natural profile to dramatically improve plant and soil health.

DAKOTA REV_M Soil and Plant Enhance

"The highest quality organic material in the world"

DAKOTA's story began thousands of years ago in what are now known as peat fields left behind from glacial Lake Agassiz after the end of the last Ice Age.

The conditions necessary to create the best organics anywhere took thousands of years.

The amazing qualities of DAKOTA materials aren't a result of human engineering, just DAKOTA's great fortune of having the best organic material in North America.

DAKOTA REV_M Soil and Plant Enhance

"The highest quality organic material in the world"

Unique properties are essential to the process

100% natural with neutral pH of 6-7

Exceptionally high microbial content

Increases fertilizer and chemical efficiency

Stimulates seed germination

Improves nutrient uptake and rootmass

Reduces incidence of pathogenic diseases

Growth enhancer

Research & Trial Collaborators -

DAKOTA has collaborated with leading institutions and agribusiness companies from around the globe on the development and validation of REV:

Better Microbial Activity

Independent laboratory analysis of REV and ordinary liquid biological products shows that REV has clearly superior biological characteristics.

		REV Crop Pro	Ordinary Products
Acti	ve Bacteria	287 μg/ml	10 – 25 μg/ml
Tota	l Bacteria	111,360 μg/ml	100 — 1,000 μg/ml
Acti	ve Fungal	0	2 – 5 μg/ml
Tota	l Fungal	15 μg/ml	10 – 100 μg/ml

Per 1 ml of REV Crop Pro

- Bacterial activity above expected levels.
 Bacterial biomass increases over time.
- Aerobic fungal biomass in normal range.
 Migh total bacterial biomass.
 - Biological activity will increase nitrogen efficiency by 25% or more.

Robust Growth & Improved Yield -

Potatoes planted in two gardens in Wichita, Kansas show a dramatic difference in plant height, mass and blooms with REV.

REV applied after emergence

No REV treatment

In a 2013 NDSU Edible Cranberry Bean trial - REV was applied alone at 1 gallon per acre in-furrow in one plot and applied at 1 quart per acre with starter fertility in a second plot.

The results as compared to the Control plot in germination rates, average plant count and total yield were clear and compelling.

Treatment	Pod Weight	Yield %	Avg. Plant Count (Per 15 ft)	Plant Germination %
Untreated	2.7 Kilograms	Baseline	42.50 plants	Baseline
Starter/Qt REV	3.0 Kilograms	+ 11%	47.25 plants	+ 11%
Gal REV	3.9 Kilograms	+ 14%	47.00 plants	+ 11%
	I	I	I	2013 NDSU research

NDSU NORTH DAKOTA STATE UNIVERSITY

Treatment	Pod Weight	Crop %
Fertilizer Only	1,095.05 Grams	Baseline
Fertilizer with 1 qt. REV	1,847.76 Grams	+ 69 %
I		2013 NDSU research

In a 2013 NDSU edible bean trial REV with fertility generated a 69% higher yield than fertility alone.

NDSU NORTH DAKOTA STATE UNIVERSITY

施用 REV

Sprayed at 39 days of growth.

15 天后拍摄

Picture taken 15 days later.

Seven days after treatment at establishment stage (Picture date 12-2-2013).

Sixteen hours after cutting samples (Picture date 12-3-2013).

2016 Irrigated Corn Trial

Protocol	Bushels/Acre
2 Quarts REV w/Fertility	222.9
1 Quart REV In-Furrow w/Fertility	217.9
1 Quart REV Foliar w/Fertility	203.6
Control – Standard Fertility Only	199.2

2015 Soybean Trial

<u>Protocol</u> <u>Bushels/Acre</u>

Control 60.08

REV Only **64.29**

REV w/ProGerm Fertilizer 66.55

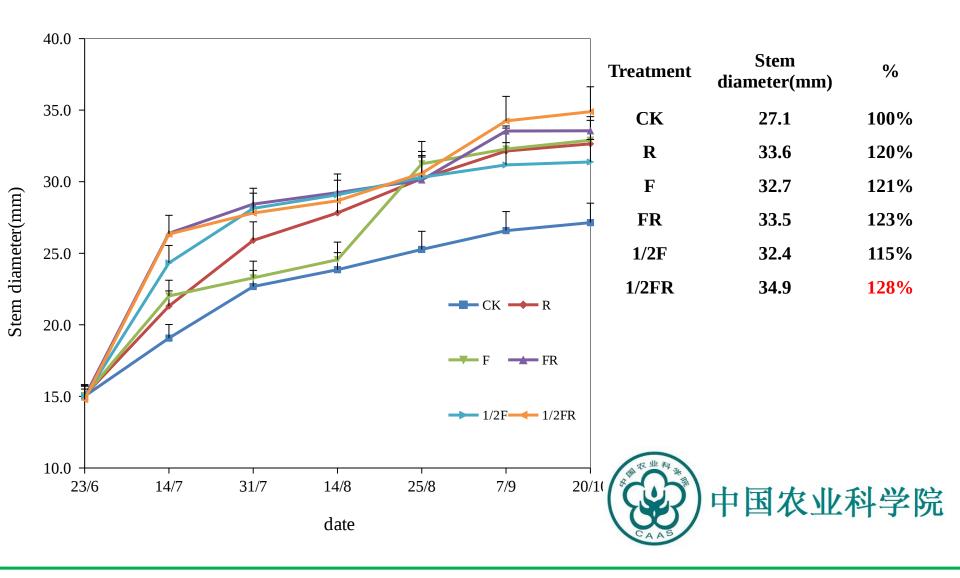
2015 Corn Trial

Protocol	Bushels/Acre
Control	133.26
REV Only	146.51
REV w/ProGerm Fertilizer	147.06
REV w/ProGerm Fertilizer + Insect	icide 151.34

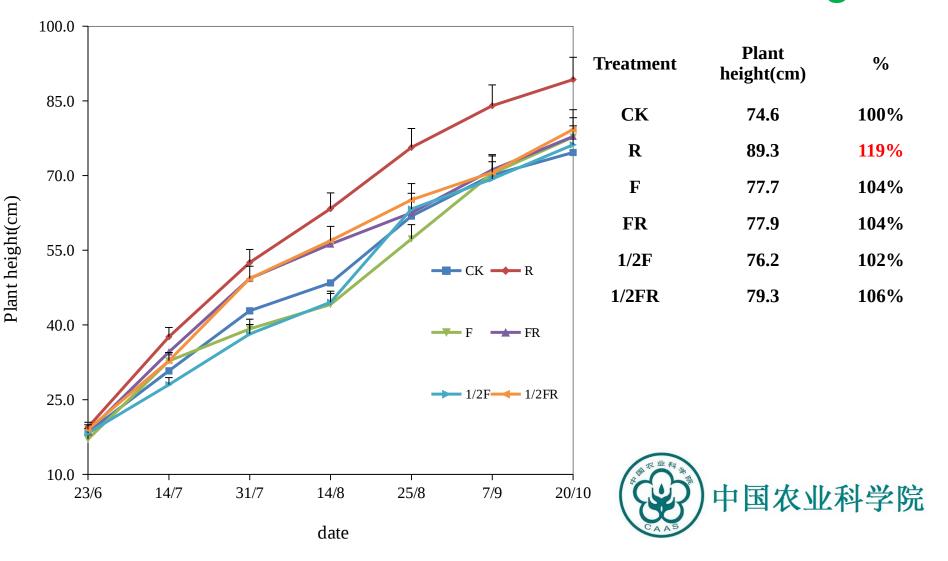
Corn Fertilizer Trial 2016

Location: Fisher, MN

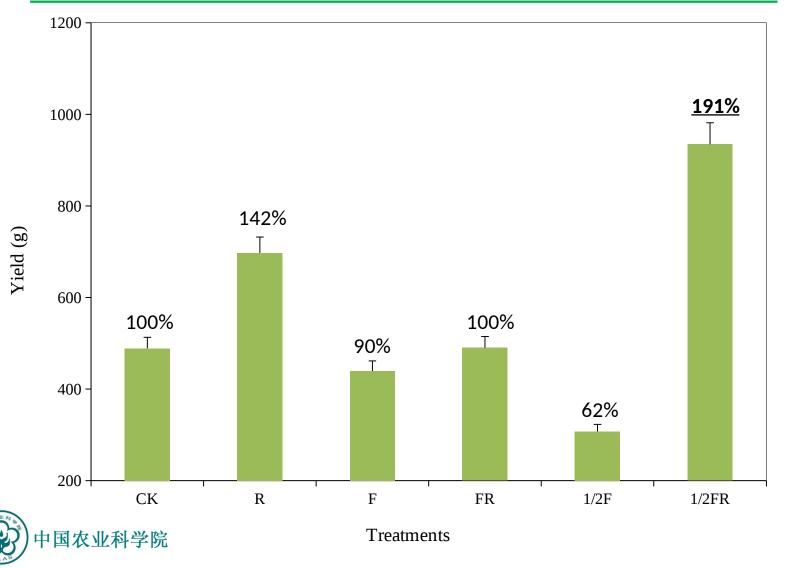
Product	Volume/Acre	bu/A	+/- (bu)
Riser/Radiate/Accomplish	1.5gal 10-34-0 + 2.5gal Riser + 1pt Accomplish + 4floz Radiate (in furrow)	238.2	32.4
Levitate/Radiate/Accomplish	3gal Levitate + 1gal 10-34-0 + 1pt Accomplish LM + 4floz Radiate (in furrow)	227.5	21.7
REV (foliar)	4gal 10-34-0 (in furrow) + 1qt REV (foliar)	227.1	21.3
Optify Stretch	4gal OptiStart Pro + 10 floz Optify Stretch (in furrow)	224.5	18.7
Ascend	4gal 10-34-0 + 4.5 floz Ascend (in furrow)	224.5	18.7
U.S. Toggle	4gal OptiStart + 10 floz Optify Stretch (in furrow) + 40 floz U.S. Toggle (foliar)	222.6	16.8
10-34-0/Zn	4gal 10-34-0 + 1qt Zinc (in furrow)	220.5	14.7
OptiStart Pro	4gal OptiStart (in furrow)	213.5	7.7
Nucleus O-phos/Kickstand Zn	4gal Nucleus O-phos + 1qt Kickstand (in furrow)	213.3	7.5
REV (in furrow)	4gal 10-34-0 + 1qt REV (in furrow)	208.9	3.1
Nucleus HP/TraFix Zn	4gal Nucleus HP + 1qt TraFix Zn (in furrow)	206.8	1.0


Check 205.8

In a 2016 independent corn trial that featured numerous leading crop input products – the data clearly shows that the yield gain from combining REV with fertility is impressive (21.3 bushels per acre more than Control). It is equally important to note that the only two combinations that generated a higher yield increase - Riser+Radiate+Accomplish and Levitate+Radiate+Accomplish - would each result in <u>4X</u> the input cost compared to REV.


Asia Trials & Research

2017 CAAS Tomato Trial – Stem Diameter



2017 CAAS Tomato Trial – Plant Height

2017 CAAS Tomato Trial – Total Yield

2017 CAAS Tomato Trial - Total Yield

Protocol	Total	Yield	Per	Group	(g)
				•	107

Control – No REV or Fertility 488.7

Half Normal Fertility Only 307.5

Full Fertility Only 439.4

REV w/ Full Fertility 490.3*

REV Only 697.2*

REV w/ Half Normal Fertility 934.8*

China Sugarbeets

2017 Sugarbeets Trial

Acreage per plot: 24 M²

Replications: Four

Cultivation and Farming: Same with traditional

Planting Date: Apr 28

REV application: Twice in June and July

REV small plot trial on sugar beet in Baotou Inner Mongolia

					亩产糖	
	亩产量	较对照	含糖	较对照	Sugar	较对照
Baotou	Root Yield,	From	Sugar	From	Yield	From
Trial	kg/mu	CK <u>+</u>	Content %	CK <u>+</u>	kg/mu	CK <u>+</u>
REV	3548.30	19.60%	13.33	-12.80%	473.06	15.97%
CK	2967.46		13.75		407.93	

The data showed that REV can help increase the root yield, but decreased the sugar content. The sugar yield was increased. The beet here suffered serious cercospora and root rot, it is hard to tell difference by beet appearance in the seedling period, and both REV and Check roots harvested involved the similar amount root rot(fusarium).

Philippines Sugarcane

2017 Sugarbeets Trial

DCD 00 047						
PSR 02-247						
Field	С	W/Dakota	W/out Dakota	% Increase	Remarks	
Area	0.83		0.2719			
Tons milled	65.17		18.808			
Tons/ha	79	83	69	20%	Harvested at 10 mos, 14 days	
Field	Α	W/Dakota	W/out Dakota	% Increase		
Area	0.638		0.2106			
Tons milled	41.651	29.17	12.48			
Tons/ha	65	68	59	15 %	Harvested at 10 mos, 26 days	
PSR 02-272						
Field	E1		W/out Dakota	% Increase	Remarks	
Area	0.24		0.0342			
Tons milled	11.02	10.02	1		Harvested at 9 months	
No. of lacsa produced	5.2	4.2	1		Cane tops cut at 7th and 9th month	
Tons/ha	68	69	58	18 9	6	
Field	S	W/Dakota	W/out Dakota	% Increase		
Area	0.5484	0.377	0.1714		No data yet	
Tons milled					To be harvested on May 2018	
Tons/ha						
PSR 01-105						
Field	G	W/Dakota	W/out Dakota	% Increase	Remarks	
Area	0.63	0.3822	0.2478		Without Dakota, harvested at 12 mos	
Tons milled		14.12	6.654		With Dakota, harvested at 12 mos, 2 week	S
Tona/ha		37	27	38%	6	
Field	S	W/Dakota	W/out Dakota	% Increase		
Area	0.4116	0.28	0.1316		A	R
Tons milled	17.655	11.873	5.782		Harvested at 9 mos	
	10	7.5	2.5		Cutback at 8th month	
No. of lacsa produced						
No. of lacsa produced Tons/ha	67	69	63	10%	6	

Vietnam Organic Produce

2018 Organic Bok Choy Trial

<u>Protocol</u> <u>Total Yield/kg</u>

Organic Fertilizer Only 5.40

REV w/Organic Fertilizer 6.50*

*20% higher yield with REV

2018 Organic Choy Sum Trial

<u>Protocol</u> <u>Total Yield/kg</u>

Organic Fertilizer Only 14.3

REV w/Organic Fertilizer 22.3*

*56% higher yield with REV

REV Treated

Untreated

REV Treated

Untreated

Dramatic difference in rootzone development in just 21 days between application of REV and harvest.

India Organic Produce

2018 Organic Hyacinth Bean Trial

Protocol

Avg. Yield/Row in kg

Organic Fertilizer Only

8.0

REV w/Organic Fertilizer

10.0*

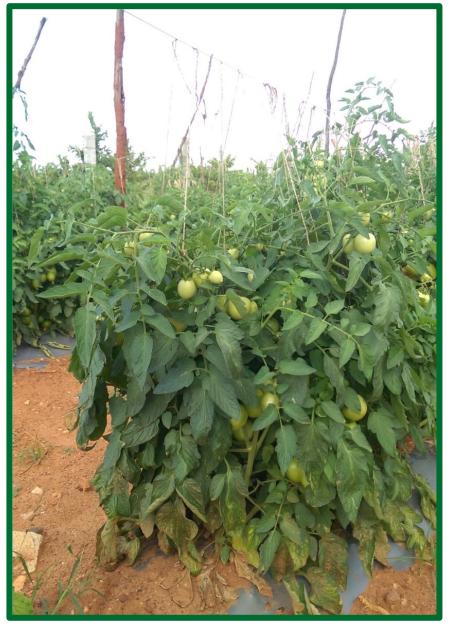
*25% higher yield with REV

2018 Organic Tomato Trial

<u>Protocol</u> <u>kg/Picking</u>

Organic Fertilizer Only

REV w/Organic Fertilizer 125.0*


*42% higher yield with REV

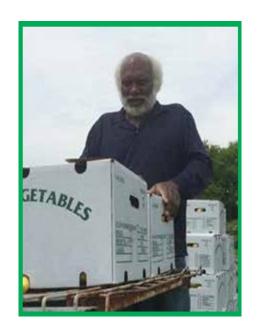
87.5

REV TREATED UNTREATED

REV TREATED UNTREATED

2018 Organic Chili Pepper Trial

Protocol Kg/Picking


Organic Ferilizer Only

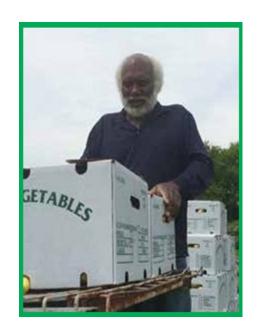
REV w/Organic Fertilizer _____

U.S. Grower Testimonials

Jackie Fraiser owns and operates a produce farm on St. Helena Island, South Carolina.

Intrigued by the idea that REV could increase yield on collard greens, Jackie mixed 12 ounces of REV with 5 gallons of water and applied that to his greenhouse collard greens flats.

Three weeks later, Jackie saw that the REV treated plants were bigger and greener than those that had only been treated with just fertilizer.

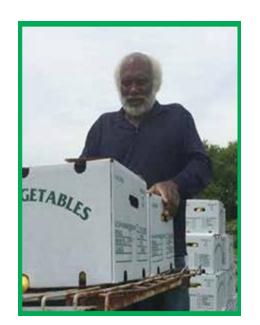


Collard greens treated with REV in the greenhouse

Untreated collard greens



During transplanting, Jackie used a mixture of 100 gallons of water with 1 gallon of 5-10-15 fertilizer and 1 quart of REV.


By mid-March, even in unseasonably cold weather, there was a big difference in the treated vs. untreated plants. The REV plants were twice as big and were ready for harvest three weeks before neighboring farmers.

For squash & zucchini, **Jackie** transplanted the 2-3" starter plants on March 21st with a mixture of 150 gallons of water, 5 gallons of 5-10-15 fertilizer and 1/2 gallon of REV.

Less than five weeks later, he did his first pick - two weeks ahead of the rest of the farmers in the state. Not only was his crop earlier, it was larger than he had ever seen. Normally, a squash plant would give him eight quality picks. With REV, Jackie had 22 picks per plant, almost three times more yield.

Bob Brewster's irrigated corn was planted with one quart of REV with the fertilizer mix in an in-furrow application and saw a **25 bushel per acre** increase with REV.

"The response difference between the treated and untreated was noticeable – I did tests with other products like a foliar blend, APS 80 and other soil adjuvants but REV worked better than any of the other tests."

Paul Tally, a dry land corn farmer, applied REV in-furrow at the rate of one quart per acre with a 10-34-0 fertilizer.

"I was pleased with REV – the plants were healthier, had better standability and stayed at 20 moisture versus 17 moisture compared to my other plants. So they took a little longer to dry down but I saw a **20 bushel per acre** boost in yield at harvest."

